
A Complete and Executable Formal Semantics of C

Anonymous

Abstract
This paper describes an executable formal semantics of C. Being ex-
ecutable, the semantics has been thoroughly tested against the GCC
torture test suite and successfully passes 99% of 776 test programs.
It is the most complete and thoroughly tested formal definition of C
to date. The semantics yields an interpreter, debugger, state space
search tool, and model checker “for free”. The semantics is shown
capable of automatically finding program errors, both statically and
at runtime. It is also used to enumerate nondeterministic behavior.

1. Introduction
C is one of the most frequently used programming languages.
It provides just enough abstraction above assembly language for
programmers to get their work done without having to worry about
the details of the machines on which the programs run. Despite
this abstraction, C is also known for the ease in which it allows
programmers to write buggy programs. With no runtime checks,
and little static checking, in C the programmer is to be trusted
entirely. Despite the abstraction, the language is still low-level
enough that programmers can take advantage of assumptions about
the underlying architecture. Trust in the programmer and the ability
to write non-portable code are actually two of the design principles
under which the C standard was written [17]. These ideas often work
in concert to yield intricate, platform-dependent bugs. The potential
subtlety of C bugs makes it an excellent candidate for formalization,
as subtle bugs can often be caught only by more rigorous means.

In this paper, we present a complete formal semantics for C that
can be used for finding program bugs. Rather than being an “on
paper” semantics, the definition is written in an executable, machine
readable form and has been tested against the GCC torture tests
(see Section 5). The semantics describes the features of the ISO/IEC
9899:1999 (C99) standard [16], but we often use the text from the
proposed C1X standard [18] when there are any uncertainties about
behavior. We use the C1X text because it will eventually supersede
the C99 standard, and because it offers clearer wording and more
explicit descriptions of certain kinds of behavior.

Our semantics can be considered a freestanding implementa-
tion of C99. The standard defines a freestanding implementation
as a version of C that includes every language feature except for
_Complex and _Imaginary types, and that includes a subset of
the standard library including the float.h, iso646.h, limits.h,
stdarg.h, stdbool.h, stddef.h, and stdint.h headers. We ad-
ditionally provide a number of functions found in math.h, stdio.h,

[Copyright notice will appear here once ’preprint’ option is removed.]

stdlib.h, and string.h, including malloc() and longjmp().
Our semantics is the first complete semantics of C (see Section 2),
and to our knowledge, one of the few instances of a complete formal
semantics of a “real” programming language.

Above all else, our semantics has been motivated by the desire to
develop formal, yet practical tools. Our semantics was developed in
such a way that the single definition could be used immediately for
interpreting, debugging, or analysis (described in Section 6). At the
same time, this practicality does not mean that our definition is not
formal. Being written in a subset of rewriting logic, it comes with
a complete proof system and initial model semantics [21]. Briefly,
a rewrite system is a set of rules over terms constructed from a
signature. The rewrite rules match and apply everywhere, making
rewriting logic a simple, uniform, and general formal computational
paradigm. This is explained in greater detail in Section 3.

Our C semantics defines 150 C syntactic operators. The defi-
nitions of these operators are given by over 1,200 semantic rules
spread over 6,400 source lines of code (SLOC). However, it takes
only 78 of those rules (562 SLOC) to cover the behavior of state-
ments, and another 161 for expressions (758 SLOC). There are 509
rules for dealing with declarations and types, 121 rules for memory,
and 237 technical rules defining helper operators. Finally, there are
112 rules for the core of our standard library. The semantics itself
is described in more detail in Section 4, and is publicly available
from http://anonymous/ (URL hidden for double blind review-
ing). We have also included it as supplementary material available
after the first round of reviews.

Contributions The specific contributions of this paper include:

• a detailed comparison of other C formalisms;
• the most comprehensive formal semantics of C to date, which is

executable and has been thoroughly tested;
• demonstrations as to its utility in discovering program flaws.

Features Our semantics captures every feature required by the
C99 standard. We include a partial list here to give an idea of the
completenes, and explain any shortcomings in Section 7. All aspects
related to the below features are included and are given a direct
semantics (not by a translation to other features):

• Expressions: referencing and dereferencing, casts, array index-
ing (a[i]), structure members (-> and .), arithmetic, bitwise,
and logical operators, sizeof, increment and decrement, assign-
ments, sequencing (_,_), ternary conditional (_?_:_);
• Statements: for, do-while, while, if, if/else, switch,
goto, break, continue, return;
• Types and Declarations: enums, structs, unions, bitfields, initial-

izers, static storage, typedefs, variable length arrays;
• Values: regular scalar values (signed/unsigned arithmetic and

pointer types), structs, unions, compound literals;
• Standard Library: malloc/free, set/longjmp, basic I/O;
• Conversions: (implicit) argument and parameter promotions and

arithmetic conversion, and (explicit) casts.

Draft; do not distribute! 1 2011/6/30

http://anonymous/

2. Comparison with Existing Formal C Semantics
There have already been a number of formal semantics written
for C. One might (rightfully) ask, “Why yet another?” We claim
that the definitions so far have either made enough simplifying
assumptions that for many purposes they are not C, or have lacked
any way to use them other than on paper. While “paper semantics”
are useful for teaching and understanding the language, we believe
that without a mechanized definition, it is difficult to gain confidence
in a definition’s appropriateness for any other purpose. Below we
highlight the most prominent definitions and explain their successes
and shortcomings in comparison with our work.

Gurevich and Huggins (1993) One of the earliest formal descrip-
tions of ANSI C is given by Gurevich and Huggins [13], using
abstract state machines (ASMs) (then known as evolving algebras).
Their semantics describes C using four increasingly precise layers,
each formal and analyzable. Their semantics covers all the high-
level constructs of the language, and uses external oracles to capture
the underspecification inherent in the definition of C. Their seman-
tics was written without access to a standard, and so is based on
Kernighan and Ritchie [20]. However, many behavioral details of the
lowest-level features of C are now partially standardized, including
details of arithmetic, type representation, and evaluation strategies.
The latter has been investigated in the context of ASMs [39], but
none are present in the original definition. Based on our own ex-
perience, the details involving the lowest-level features of C are
incredibly complex (see Section 3.1), but we see no reason why the
ASM technique could not be used to specify them.

Their semantics was never converted into an executable tool, nor
has it been used in applications. However, their purpose and context
was different from ours. As pointed out elsewhere [25, p. 11], their
semantics was constructed without the benefit of any mechanization.
According to Gurevich,1 their purpose was to “discover the structure
of C,” at a time when “C was far beyond the reach of denotational
semantics, algebraic specifications, etc.”

Cook, Cohen, and Redmond (1994) Soon after the previous defi-
nition, Cook et al. [7] describe a denotational semantics of C90 using
a custom-made temporal logic for the express purpose of proving
properties about C programs. Their grammar covers nearly the entire
C syntax, although they desugar some of it into other constructs to
reduce the number of primitives that need independent semantics.
Like us, they give semantics for particular implementation-defined
behaviors in order to have a more concrete definition. These choices
are then partitioned off so that one could, in theory, choose different
implementation-defined values and behaviors.

They have given at least a basic semantics to most C constructs.
We say “at least” without malicious intent—although their work
was promising, they moved on to other projects before developing a
testable version of their semantics and without doing any concrete
evaluation.1 Additionally, no proofs were done using this semantics.

Cook and Subramanian (1994) The related work of Cook and
Subramanian [6, 36] is a semantics for a restricted subset of C,
based loosely on the semantics above. This semantics is embedded
in the theorem prover Nqthm [4] (a precursor to ACL2). They
were successful in verifying at least two functions: one that takes
two pointers and swaps the values at each, and one that computes
the factorial. They were also able to prove properties about the
C definition itself. For example, they prove that the execution of
p = &a[n] puts the address of the nth element of the array a into
p [6, p. 122]. Their semantics is, at its roots, an interpreter—it
uses a similar technique to that described by Blazy and Leroy [2]
to coax an interpreter from recursive functions—but there is no

1 Personal communication, 2010.

description in their work of any reference programs they were
capable of executing. As above, it appears the work was terminated
before it was able to blossom.

Norrish (1998) The next major semantics was provided by Nor-
rish [25], who gives both static and dynamic formal semantics inside
the HOL theorem proving system for the purpose of verifying C
programs (later extended to C++ [26]). His semantics is in the
Structural Operational Semantics (SOS) style, using small-step for
expressions and big-step for statements. One of the focuses of his
work is to present a precise description of the allowable evaluation
orders of expressions. His semantics still stands as a precise rep-
resentation of evaluation in C. In Section 6.3 we demonstrate how
our definition captures the same behaviors.

Working inside HOL provides an elegant solution to the under-
specification of the standard—Norrish can state facts given by the
standard as axioms/theorems. To maintain executability, we chose
instead to parameterize the definition for those semantic choices
that are implementation-defined. In that respect, our definitions con-
ceptually complement each other—his is better for formal proofs
about C, while ours is better for searching for behaviors in C pro-
grams (see Section 6.3.1). Proofs of program correctness [32] as
well as semantics-level proofs [10] have already been demonstrated
in the framework used by our semantics, but we have not yet ap-
plied these techniques to C.

Norrish uses his definition to prove some properties about C
itself, as well as to verify some strong properties of simple (≤ 5 line)
programs, but was unable to apply his work to larger programs.
His semantics is not executable, so it has not been tested against
actual programs. However, the proofs done within the HOL system
help lend confidence to the definition.

Papaspyrou (2001) A denotational semantics for C99 is described
by Papaspyrou [27, 28] using a monadic approach to domain
construction. The definition includes static, typing, and dynamic
semantics, which enables him not only to represent the behavior of
executing programs, but also check for errors like redefinition of an
identifier in the same scope. Papaspyrou, Norrish, and Cook et al.
each give a typing semantics in addition to the dynamic semantics,
while we and Blazy and Leroy (below) give only dynamic semantics.

Papaspyrou represents his semantics in Haskell, yielding a tool
capable of searching for program behaviors. This was the only
semantics for which we were able to obtain a working interpreter,
and we were able to run it on a few examples. Having modeled
expression non-determinism, and being denotational, his semantics
evaluates a program into a set of possible return values. However,
we found his interpreter to be of limited capability in practice.
For example, using his definition, we were unable to compute the
factorial of six or the fourth Fibonacci number.

Blazy and Leroy (2009) A big-step operational semantics for a
subset of C is given by Blazy and Leroy [2]. While they do not
claim to have given semantics for the entirety of C, their semantics
does cover most of the major features of the language and has
been used in a number of proofs including the verification of the
optimizing compiler CompCert.

To help validate the semantics, they have done manual reviews
of the definition as well as proved properties of the semantics
such as determinism of evaluation. They additionally have veri-
fied semantics-preserving transformations from their language into
simpler languages, which are easier to develop confidence in. Their
semantics is not directly executable, but they describe a mechanism
by which they could create an equivalent recursive function that
would act as an interpreter. This work has not yet been completed.
They are also working on a small-step and an axiomatic semantics
in order to prove relationships between the semantics—the small

Draft; do not distribute! 2 2011/6/30

Definition
Feature GH CCR CR No Pa BL —

Bitfields G# # # G# #
Enums G# # # #
Floats # # # #
String Literal # # #
Struct/Union G#
Struct as Value # # # # #

Arithmetic G# #
Bitwise # # #
Casts G# G# # G# G#
Functions G#
Exp. Side Effects # #

Break/Continue G# G#
Goto G# # # # #
Switch G# # # G#

Longjmp # # # # # #
Malloc # # # # # #
Variadic Funcs. # # # # # #

Feature GH CCR CR No Pa BL —
 : Fully Described G#: Partially Described #: Not Described

GH represents Gurevich and Huggins [13], CCR is Cook et al. [7], CR is
Cook and Subramanian [6], No is Norrish [25], Pa is Papaspyrou [28], BL is
Blazy and Leroy [2], and — is our work.

Figure 1. Dynamic Semantics Features

step semantics has been completed since publication of their work,
and is now being used in CompCert to handle goto.2

Their semantics does not handle sub-expressions with side
effects, which, because their semantics is big-step, represents a
significant barrier to obtaining a full semantics of C. Without
changing most of their current rules, adding expression side effects
(and the nondeterminism that comes along with that) would be
a difficult undertaking. It is important to point out that writing a
full semantics was not their intention—they deliberately made this
decision to cover a subset of features and behavior to simplify their
semantics and make corresponding proofs easier. Based on their
success with the related formal proofs, this appears to have paid off.

There are other formal semantics of C (or fragments of C) that
we choose not to review here, including Black [1] and Bofinger [3],
as they either focus on subsets subsumed by the work previously
discussed, or do not give dynamic semantics.

We condense our study of related works into a simple chart
shown in Figure 1. For interested parties, this chart may be con-
tentious. However, we believe that it is useful, both for developers of
formal semantics of C and for users of them, to give a broad (though
admittedly incomplete) overview of the state of the art of the formal
semantics of C. Also, it may serve as an indication of the complexity
involved in the C language. Note that not all features are equally dif-
ficult. Adding additional rules to catch arithmetic overflow would be
much easier than adding support for bitfields, for example. Like the
example above with a big-step semantics and different evaluation or-
ders, adding new features can sometimes be difficult, depending on
the semantical style or way in which the constructs were described.

We did our best to give the authors the benefit of the doubt
with features they explicitly mentioned, but the other features were
based on our reading of their semantics. We have also discussed
our views with the authors, where possible, to try and establish a

2 Personal communication, 2010.

consensus. Obviously the categories are broad, but our intention is
to give an overview of some of the more difficult features of C. We
purposefully left off any feature that all definitions had fully defined.

Finally, there are a number of other emergent features, such as
multi-dimensional arrays, that are difficult to discern correctness
through simple inspection of the formal semantics (i.e., without
testing or verifying it). It is also difficult to determine if feature pairs
work together—for example, does a definition allow bitfields inside
of unions? We decided to leave most of these features out of the
chart because they are simply too hard to determine if the semantics
were complete enough for them to work properly.

3. Background
In this section we give a little background on the C standard,
including some important definitions. We additionally explain the
rewriting formalism we use to give our semantics of C.

3.1 C Standard Information
The C standard uses the idea of undefined and partially defined
behaviors in order to avoid placing difficult requirements on imple-
mentations. It categorizes the particular behaviors of any C imple-
mentation that are not fully defined into four categories: unspecified,
implementation-defined, undefined, and locale-specific behavior [18,
§3.4]. For the purposes of this paper, we focus on only three of these:

unspecified behavior Use of an unspecified value, or other behav-
ior [with] two or more possibilities and [. . .] no further require-
ments on which is chosen in any instance.

implementation-defined Unspecified behavior where each imple-
mentation documents how the choice is made.

undefined behavior Behavior, upon use of a non-portable or erro-
neous program construct or [data, with] no requirements.

An example of unspecified behavior is the order in which the argu-
ments to a function are evaluated. An example of implementation
defined behavior is the size of an int. An example of undefined
behavior is referring to an object outside of its lifetime.

To put these definitions in perspective, for a C program to be
maximally portable, “it shall not produce output dependent on any
unspecified, undefined, or implementation-defined behavior, and
shall not exceed any minimum implementation limit” [18, §4.5].
This is called “strict conformance”. However, many C programs are
inherently non-portable (e.g., device drivers). The standard offers
another level of conformance (simply called “conforming”) where
the program may rely on particular implementation-defined or even
unspecified (but never undefined) behavior. The standard requires
that all implementation-defined behaviors are documented by an
implementation, giving the programmer even more of a license to
rely on these behaviors. Based on this, we offer a definition para-
metric in the implementation-defined behaviors, and use symbolic
computation to describe unspecified behaviors. As much as possible,
this behavior is kept separate from the semantics underlying the
high-level (defined for all implementations) aspects of the language.
More details about our parameterization are described in Section 4.5,
and about our use of symbolic values in Section 6.2.2. We do not
give semantics to any undefined behavior.

3.2 Why Details Matter
It is tempting to gloss over the details of C’s arithmetic and other
low-level features when giving it a formal semantics. However,
the language is designed to be translatable to common machine
architectures where there are particular instructions for adding 16-
bit numbers, 32-bit numbers, etc. Although the language tries to hide
this overloading, its effects are easily felt at the size boundaries of
the types. It is a common source of confusion among programmers,

Draft; do not distribute! 3 2011/6/30

and so a common source of bugs. We give a few examples that
reveal that arithmetic in C is heavily overloaded, and that even
trivial programs can involve complex semantics. Keep in mind that
unless specified, in C a type is assumed to be signed.3

For the purposes of these examples, assume that ints are 2
bytes (capable of representing the values −32768 to 32767) and
long ints are 4 bytes (−2147483648 to 2147483647). In the
following program, what value does c receive [37, Q3.14]?

int a = 1000, b = 1000;
long int c = a * b;

One is tempted to say 1000000, but that misses an important C-
specific detail. The two operands of the multiplication are ints, so
the multiplication is done at the int level. It therefore overflows
(1000 ∗ 1000 = 1000000 > 32767), which, according to the C
standard, makes the expression undefined.

Let us change the example slightly by making the types of a
and b unsigned (0 to 65535):

unsigned int a = 1000, b = 1000;
long int c = a * b;

Here, the arithmetic is again performed at the level of the operands,
but overflow on unsigned types is completely defined in C. The result
is computed by simply reducing the value modulo one more than
the max value [18, §6.3.1.3:2]. 1000000 mod 65536 gives us 16960.

One last variation—signed chars are one byte in C (−128 to
127).4 What does c receive?

signed char a = 100, b = 100;
int c = a * b;

Since the chars are signed, then based on the first example above the
result would seem undefined (100 ∗ 100 = 10000 > 127). However,
this is not the case. In C, types smaller than ints are promoted to
ints before doing arithmetic. There are basically implicit casts
on the two operands: int c = (int)a * (int)b;. Thus, the
result is actually 10000.

While the above examples might seem like a game, the conclusion
we draw is that it is critical when defining the semantics of C
to handle all of the details. The semantics at the higher level of
functions and statements is actually much easier than at the level of
expressions and arithmetic. These issues are subtle enough that they
are very difficult to catch just by manually inspecting the code, and
so need to be represented in the semantics if one wants to find bugs
in real programs. Despite errors related to the above details being
common in real compilers, previous formal semantics for C either
did not give semantics at this level of detail, or were not suitable
for identifying programs that misused these features. This is one of
our primary reasons for wanting an executable semantics.

3.3 Rewriting Logic and K
To give our semantics, we use a rewriting-based semantic framework
called K [33], inspired by rewriting logic (RL) [21]. In particular,
our machine-readable semantics is written using the K-Maude
tool [35], which takes K rewrite rules and translates them into
Maude [5]. Maude is a performant rewriting-logic engine that
provides facilities for the execution and/or analysis of rewriting-
logic theories. This enables us to use the definition as an interpreter
(Section 4.7), as well as allows us to demonstrate its suitability
for program analysis (Section 6).

3 Except char, where it is implementation-defined.
4 We should note that bytes are only required to be at least 8 bits long. The
particular numbers here are for the example only.

RL organizes term rewriting modulo equations (namely associa-
tivity, commutivity, and identity) as a logic with a complete proof
system and initial model semantics. The central idea behind using
RL as a formalism for the semantics of programming languages is
that the evolution of a program can be described using rewrite rules.
A rewriting theory consists essentially of a signature describing
terms and a set of rewrite rules that describe the actual steps of
computation. Given some term allowed by signature (in most cases,
a program together with input), deduction consists of the application
of the rules to that term. This yields a transition system for any
program, and there are pre-existing generic tools that allow different
means to explore the transition system. A single path of rewrites
describes the behavior of an interpreter, while searching all paths
would yield all possible answers in a non-deterministic program.

For the purposes of this paper, the K formalism can be regarded
as a front-end to RL designed specifically for defining languages. In
K, parts of the state are represented as labeled, nested multisets, as
seen in Figure 2. These collections contain pieces of the program
state like a computation stack or continuation (e.g., k), environments
(e.g., env, types), stacks (e.g., callStack), etc. As this is all best
understood through an example, let us consider a typical rule for
a simple imperative language (see Section 4.4.2 for the equivalent
rule in C) for finding the address of a variable:

〈 &X
L
···〉k 〈··· X 7→ L ···〉env

First, recall that this is describing a rewrite-rule, not a natural
deduction system. We see here two cells, k and env. The k cell
represents a list (or stack) of computations waiting to be performed.
The left-most (i.e., top) element of the stack is the next item to
be computed. The env cell is simply a map of variables to their
locations. The rule above says that if the next thing to be evaluated
(which here we call a redex) is the application of the referencing
operator (&) to a variable X, then one should match X in the
environment to find its location L in memory. With this information,
one should transform the redex into that location in memory, L.

This example exhibits a number of features of K. First, rules
only need to mention those cells (again, see Figure 2) relevant to the
rule. The rest of the cell infrastructure can be inferred, making the
rules robust under most changes in state. Second, to omit a part of
a cell we write “···”. For example, in the above k cell, we are only
interested in the current redex &X, but not the rest of the context.
Finally, we draw a line underneath parts of the state that we wish
to change—in the above case, we only want to evaluate part of the
computation, but neither the context nor the environment change.

This unconventional notation is actually quite useful. The above
rule would be written out as a traditional rewrite rule like this:

〈& X y κ〉k 〈ρ1, X 7→ L, ρ2〉env⇒ 〈L y κ〉k 〈ρ1, X 7→ L, ρ2〉env

We use “y” to separate items in the k cell, which can now be seen.
The κ and ρ1, ρ2 take the place of the “···” above. The most important
thing to notice is that nearly the entire rule is duplicated on the right-
hand side (RHS). Duplication in a definition requires that changes
be made in concert, in multiple places. If these bits are not kept
in sync, it leads to subtle semantic errors. In a complex language
like C, the configuration structure is much more complicated, and
would require actually including additional cells like control and
local (Figure 2). These intervening cells are automatically inferred
in K, which keeps the rules more modular.

Going back to K, we use “·” to represent the unit element of
any algebraic lists or sets (including the “y” list). We also use
“—” to stand for a term that we do not care to name. Finally, in
order to get the redexes to the top of the k cell (i.e., in order to
identify which positions in the syntax tree can be reduced next), the
grammar of C is annotated with additional “strictness” annotations.

Draft; do not distribute! 4 2011/6/30

〈
〈K〉k

〈 〈
〈Map〉env 〈Map〉types 〈Map〉structs 〈List〉loopStack 〈Bag〉locsWrittenTo 〈K〉currFunction

〉
control

〈List〉callStack
〉

local
〈Map〉genv 〈Map〉gtypes 〈Map〉gstructs 〈Map〉mem 〈Map〉malloced 〈Map〉gotoMap

〉
T

Figure 2. Subset of the C Configuration

For example, for addition, we say that
Exp ::= Exp + Exp [strict]

which means that the either argument of the addition operator can
be taken out for evaluation, nondeterministically. In contrast, the
if construct looks like this:

Stmt ::= if (Exp) Stmt [strict(1)]

indicating that only the first argument can be taken out for evaluation.
The two annotations above cause the following six rules to be
automatically generated:

〈 E1+E2
E1 y 2+E2

···〉k 〈 E1+E2
E2 y E1+2

···〉k 〈 if (E) S
E y if (2) S

···〉k

〈 V y 2+E2
V+E2

···〉k 〈 V y E1+2
E1+V

···〉k 〈 V y if (2) S
if (V) S

···〉k

Here, E1, E2, and E represent unevaluated expressions and V
represents an evaluated expression (i.e., a value). While these are
the rules generated by K-Maude, in the theory of K they can apply
anywhere (not just at the top of the k cell). There are additional
annotations for specifying more particular evaluation strategies, and
can be found in documentation on K [33]. We also give names to
certain contexts that are evaluated differently. For example, the left-
hand side (LHS) of an assignment is evaluated differently than the
RHS. The use of this is described in Section 4.4.1.

4. The Semantics of C in K
In this section, we describe the different components of our defini-
tion and give a number of example rules from the semantics.

4.1 Syntax
We use the FrontC parser, with additions made and included in
CIL [22], an “off-the-shelf” C parser and transformation tool. FrontC
itself is only a parser of ANSI C (C90), and CIL extended it
with syntax for C99. We use only the parser here, and none of
the transformations of CIL; we give semantics directly to the
abstract syntax tree generated by the parser. The FrontC parser
(with C99 extensions) is used by a number of other tools, including
CompCert [2] and Frama-C [8].

4.2 Configuration (Program + State)
The configuration of a running program is represented by nested
multisets of labeled cells, and Figure 2 shows the most important
cells used in our semantics. While this figure only shows 16 cells,
we use over 60 in the full semantics. The large T cell contains the
cells used during program evaluation: at the top, a k cell contains
the current computation itself and a local cell holds a number of
cells related to control flow, and below, there are a number of cells
dealing with global information.

In the local cell, there is a callstack used for calling and returning
from functions, and a control cell which gets pushed onto the call
stack. Inside the control cell, there is a local variable environment
(env), a local type environment (types), local aggregate definitions
(structs), a loop stack (Section 4.4.4), a record of the locations that
have been written to since the last sequence point (Section 4.6), and
the name of the current function. The cells inside the control cell
were separated in this manner because these are the cells that get
pushed onto the call stack when making a function call.

Outside the local cell are a number of global mappings, such as
the global variable environment (genv), the global type environment
(gtypes), global aggregate definitions (gstructs), the heap (mem),
the dynamic allocation map (malloced), and a map from function-
name/label pairs to continuations (for use by goto and switch).
Finally, outside the T cell, there are cells for input, output, and a
final cell for the value returned by main().

4.3 Memory Layout
Our memory is essentially a map from locations to blocks of bytes.
It is based on the memory model of both Blazy and Leroy [2] and
Roşu et al. [34] in the sense that the actual locations themselves are
symbolic numbers. However, it is more like the former in that the
actual blocks of bytes are really maps from offsets to bytes.

Below we see a snippet of a memory cell, holding four bytes:

〈··· 32 7→ obj (4, (0 7→ 7, 1 7→ 23, 2 7→ 140, 3 7→ 4)) ···〉mem

This says that at symbolic location 32, there is an object whose
size is 4 bytes; those bytes are 7, 23, 140, and 4. All objects are
broken into individual bytes, including aggregate types like arrays
or structs, as well as base types like integers.

Our pointers are actually base/offset pairs, which we write as
sym(B) + O, where B corresponds to the base address of an object
itself, while the O represents the offset of a particular byte in the
object. We wrap the base using “sym” because it is symbolic—
despite representing a location, it is not appropriate to, e.g., directly
compare B < B′ (Section 6.2.2). It is better to think of the 32 above
as representing “object 32”, as opposed to “location 32”.

When looked up, the bytes are interpreted depending on the type
of the construct used to give the address. The simplest example possi-
ble is dereferencing a pointer sym(32)+2 of type unsigned char*,
which would simply yield the value 140 of type unsigned char.
Looking up data using different pointer types requires taking into
account a number of implementation-defined details such as the use
of signed magnitude, one’s, or two’s complement representation,
or the order of bytes (endianness). These choices are made para-
metric in the semantics, and can be configured depending on which
implementation a user is interested in working with (Section 4.5).

When new objects (ints, arrays, structs, etc.) get allocated, each is
created as a new block and is mapped from a new symbolic number.
The block is allowed to contain as many bytes as in the object, and
accesses relative to that object must be contained in the block. We
represent information smaller than the byte (i.e., bitfields) by using
offsets within the bytes themselves. While it might seem that it
would be more consistent to treat memory as mappings from bit
locations to individual bits, bitfields themselves are not addressable
in C, so we decided on this hybrid approach.

4.4 Semantics
We now give the flavor of our semantics by examining a few of
the 1,200 rules. For the rules below, recall that in K, what is above
the line is considered the LHS of the rule, while what is below the
line is considered the RHS. Parts of a rule without a line at all are
considered to be on both sides of the rule.

4.4.1 Lookup and Assignment
We first consider one of the most basic expressions—the identi-
fier. According to the standard, “An identifier is a primary expres-
sion, [. . .] designating an object (in which case it is an lvalue) or a

Draft; do not distribute! 5 2011/6/30

function (in which case it is a function designator)” [18, §6.5.1:2].
Although in informal language an “lvalue” is an expression that
appears on the LHS of an assignment, this is not the case according
to the C standard. An lvalue can be more accurately thought of as
any expression that designates a place in memory; a footnote in the
standard suggests it might better be called a “locator value” [18,
§6.3.2.1:1]. We denote lvalues with brackets; an lvalue that points
to location L which is of type T is denoted by [L] : T . With this
in mind, here then is our lookup rule:

〈 X
[L] : T

···〉k 〈··· X 7→ L ···〉env 〈··· X 7→ T ···〉type

This rule is actually very similar to the example address-of rule we
gave in Section 3.3. It says that when the next thing to evaluate is
the program variable X, both its location L and its type T should be
looked up (in the env and type cells), and the variable should be
replaced by an lvalue containing those two pieces of information.
We distinguish objects and functions the based on type.

In almost all contexts, this lvalue will actually get converted
to the value at that location:

Except when it is the operand of the sizeof operator, the
unary & operator, the ++ operator, the -- operator, or the
left operand of the . operator or an assignment operator,
an lvalue that does not have array type is converted to the
value stored in the designated object (and is no longer an
lvalue) [16, §6.3.2.1:2].

We call these contexts “reval”, for “right” evaluation (vs. left
evaluation). Here is the rule for simplifying lvalues in the “right
value” context:

reval([L] : T)⇒ read(L, T)
where ¬(isArrayType(T) ∨ isFunctionType(T))

The rule for “read” then does the actual read from memory. Its
evaluation involves a series of rules whose job is to determine the
size of the type, pull the right bytes from memory, and to piece
them together in the right order to reconstruct the value. There are
over 10 highly technical rules defining “read”, just for integer types
alone. This process results in a normal value, instead of an lvalue,
which we represent simply as V : T .

4.4.2 Reference and Dereference
We can now take a look at the rule for the & operator:

〈 & ([L] : T)
L : pointerType(T)

···〉k

This rule says that when the next computation to be performed
is taking the address of an lvalue, it should simply be converted
into a “true value” holding the same address, but whose type is a
pointer type to the original type. We can expect to find an lvalue
as the argument because the “reval” context does not include the
arguments of the address operator.

The rule for dereference is similarly simple:

〈 * (L : pointerType(T))
checkDerefLoc(L) y [L] : T

···〉k where T , void

This will first make sure that the location L is allowed to be
dereferenced (e.g., it is valid memory), and will then evaluate to an
lvalue of the same location. As with lookup, no memory is read by
default. Notice that checkDerefLoc is “blocking” the top of the k
cell. As long as it stays there, no rules that match other constructs
on the top of k can apply. If checkDerefLoc succeeds, it will simply
evaluate to the unit of the y construct and disappear. This is called

“dissolving”. Our rule for checkDerefLoc is:

〈 checkDerefLoc(sym(B) + O)
·

···〉k 〈··· B 7→ obj(Len,—) ···〉mem

where O < Len

Here we actually match the constituent parts of a location, B and
O, or base and offset as explained in Section 4.3. We then match
the base part of the pointer in the memory cell, giving us an object,
and check that the offset is within the bounds of the object. If this
is the case, we dissolve the checkDerefLoc task.

4.4.3 Structure Members
The standard says, “A postfix expression followed by the . operator
and an identifier designates a member of a structure or union object.
The value is that of the named member, and is an lvalue if the first
expression is an lvalue” [18, 6.5.2.3:3].

Here is the rule for when the first expression is an lvalue:

〈 ([L] : structType(S)).F
[L + Offset] : T

···〉k 〈··· S 7→ (F 7→ Offset —) ···〉structs

This rule finds the offset Offset of the field F in struct S and simply
adds it to the base address L of the struct to evaluate the expression.
The result is another lvalue. In contrast, the rule for when the first
expression is not an lvalue cannot simply work with pointers:

〈 (V : structType(S)).F
extractField(V,Offset, S,F)

···〉k 〈··· S 7→ (F 7→ Offset —) ···〉structs

One situation in which this arises is when a function returns a struct,
and the programmer uses the function call to access a particular field,
as in the expression fun().field. The call to fun() will result
in a struct value, represented in the rule above by V : structType(S).
The helper function extractField will look at the bytes of the struct
(represented by V) and “read” a value of the appropriate type from
the Offset. There are many rules shared by the extractField and read
helpers, since both have to piece together bytes in implementation-
defined orders to make new values.

The semantics for the arrow operator (p->f) is identical to that
of the dot operator above after dereferencing the first subexpression:

E -> F⇒ (*E).F

There are similar rules as above for union, where all offsets of
a union’s fields are 0.

4.4.4 While and Break
In comparison to expressions, the semantics of C statements is
simple (all together it takes up fewer than 10 pages in the C1X
standard [18, §6.8]). Still, we now show our semantics for while
and break. The first rule prepares a while loop for execution:

〈 while(B) S y κ
preparedWhile(B) S y break

〉k 〈 ·

κ
···〉loopStack

The remaining computation (κ) following the while (i.e., the context
of the while) is pushed onto a loop stack. The effect is a push,
because “nothing” (represented by “·”) at the top of the stack is being
replaced by κ. This loop stack will be used if the loop terminates
normally or a break statement is encountered. We insert a break
statement into the computation after the preparedWhile to use
a single mechanism in either case.

The main rule for while loops simply unrolls the (marked) loop
once, turning the guard into an if-statement:

〈 preparedWhile(B) S
if(B)(S y preparedWhile(B) S)

···〉k

When the guard evaluates as true, the body and then the prepared
while will be up for evaluation again. Using the loop stack, the

Draft; do not distribute! 6 2011/6/30

break statement itself is trivial:

〈 breaky —
κ

〉k 〈 κ
·

···〉loopStack

It simply pops the stack and replaces the current computation with
what was popped.

4.4.5 Malloc and Free
Here we show our semantics of malloc and free. These are
functions from the standard C library that perform dynamic memory
allocation and deallocation. The declarations of these functions are:

void *malloc(size_t size);
void free(void *ptr);

where size_t is an unsigned integer type that is implementation
defined. When a programmer calls malloc(), an implementation
can return a new pointer pointing to a new block of memory the
size specified by the programmer, or it can return NULL (e.g., if
there is no memory available).

Here is the rule for a successful call to malloc:

〈 malloc(N : size_t)
alloc(L,N) y L : pointerType(void)

···〉k 〈··· ·

L 7→ N
···〉malloced

where L is fresh

If the user requests N bytes, the semantics will schedule that many
bytes to be allocated at a new location and record that this memory
was dynamically allocated in the malloced cell. Here is the related
rule for a failed called to malloc:

〈 malloc(—)
NullPointer : pointerType(void)

···〉k

This rule is usually only useful when searching the state space.
A call to free is meant to deallocate space allocated by malloc.

Its rule is also straightforward:

〈 free(L : —)
·

···〉k 〈··· L 7→ N
·

···〉malloced 〈··· L 7→ obj(N,—)
·

···〉mem

When the user wants to free a pointer L, it is removed from both the
malloced and mem cells. By matching these cells, the rule ensures
that the pointer has not already been freed, and once applied, ensures
no other rules that use that address can match into the memory.

4.4.6 Setjmp and Longjmp
Finally, we show our semantics of setjmp and longjmp. These
are functions from the standard C library that perform complex
control flow. They are reminiscent of call/cc, and are often used
as a kind of exception handling mechanism in C. The declarations
of these functions are:

int setjmp(jmp_buf env);
void longjmp(jmp_buf env, int val);

where jmp_buf is an array type “suitable for holding the information
needed to restore a calling environment.” A call to setjmp “saves
its calling environment [...] for later use by the longjmp function.”
Additionally, the call to setjmp evaluates to zero [18, §7.13.1].
Here is our rule for set_jmp:

〈 setjmp(L : jmp_buf)
write(L, C 〈κ〉k) y 0 : int

y κ〉k 〈C〉local

Because jmp_buf is an array type, it will evaluate to an address L.
In the rule above, we match the remaining computation κ (similar
to a continuation), as well as the local execution environment C.
This includes cells like the call stack and the map from variables to
locations (which we also call the environment). The rule then causes
this information to be written at the location of the jmp_buf.

A call to longjmp “restores the environment saved by the most
recent invocation of [setjmp] with the corresponding jmp_buf
argument” [18, §7.13.2]. When the user calls longjmp, this address
is read to find that previous context:

〈 longjmp
longjmp-aux

(L : T
read(L,T)

,—) ···〉k

and it is then restored:

〈 longjmp-aux((C 〈κ〉k : —), I : int)
(if I = 0 then 1 else I fi) : int

y —
κ
〉k 〈—

C
〉local

This function returns the val that the user passes, unless this is
a 0, in which case it returns 1.

It should be clear that these rules operate on the configuration
itself, treating it as a first-class term of the formalism. The fact
that K allows one to grab the continuation κ as a term is what
makes the semantics of these constructs so easy to define. This is
in sharp opposition to semantic formalisms like SOS [30] where
the context is a derivation tree and not directly accessible as an
object inside a definition.

4.5 Parametric Behavior
We chose to make our definition parametric in the implementation-
defined behaviors (and are not the first to do so [2, 7]). Thus, one
can configure the definition based on the architecture or compiler
one is interested in using, and then proceed to use the formalism
to explore behaviors. This parameterization allows the definition
to be “fleshed out” and made executable.

For a simple example of how the definition is parametric, our
K-Maude module C-SETTINGS starts with:

numBytes(signed-char)⇒ 1 numBytes(short-int)⇒ 2
numBytes(int)⇒ 4 numBytes(long-int)⇒ 4

numBytes(long-long-int)⇒ 8 numBytes(float)⇒ 4
numBytes(double)⇒ 8 numBytes(long-double)⇒ 16

These settings are then used to define a number of operators:

numBits(T)⇒ numBytes(T) ∗ bitsPerByte where ¬isBitfieldType(T)
min(int)⇒ −(2numBits(int)−1)
max(int)⇒ 2numBits(int)−1 − 1

Here we use a side condition to check when a type is not a bitfield.
Finally, the above rules are used to define how an integer V of type
T is cast to an unsigned integer type T ′:

cast(T’, V : T)⇒ (V % (max(T’) + 1))) : T’
where isIntegerType(T) ∧ isUnsignedIntegerType(T’) ∧ V > max(T’)

Here we use helper predicates in our side conditions to make sure
this rule only applies when casting from integer types to unsigned
integer types. There are similar equations used to define other cases.

4.6 Expression Evaluation Strategy and Undefined Behavior
The C standard allows compilers freedom in optimizing code, which
includes allowing them to choose their own expression evaluation
order. This includes allowing them to:

• delay side effects: e.g., allowing the write to memory required
by x=5 or x++ to be made separately from its evaluation or use;
• interleave evaluation: e.g., A + (B * C) can be evaluated in

the order B, A, C.

At the same time, the programmer must be able to write programs
whose behaviors are reproducible, and only allow non-determinism
in a controlled way. Therefore, the standard makes undefined certain
situations where reordering creates a “race condition”. The latest
treatment of this restriction is given by the C1X standard:

Draft; do not distribute! 7 2011/6/30

If a side effect on a scalar object is unsequenced relative to ei-
ther a different side effect on the same scalar object or a value
computation using the value of the same scalar object, the
behavior is undefined. If there are multiple allowable order-
ings [...], the behavior is undefined if such an unsequenced
side effect occurs in any of the orderings [18, §6.5:2].

This means that if there are two writes, or a write and a read
to the same object that are unsequenced (i.e., either is allowed
to happen before the other), then the expression is undefined.
Examples of expressions made undefined by this clause include
(x=0)+(x=1) and (x=0)+x and x=x++ and *p=x++, for int x
and int* p=&x. This relation is related to the concept of “sequence
points”, also defined by the standard. Sequence points cause the
expressions they fall between to be sequenced. The most common
example of a sequence point is the semicolon, i.e., the end of an
expression-statement. All previous evaluations and side effects must
be complete before crossing sequence points.

A hasty read of the standard may wrongly indicate that detecting
this kind of undefined behavior is an easy problem that can be
checked statically. In fact, it is undecidable statically; moreover, one
needs to use the entire semantics in order to check it dynamically.
Consider the following example:

int x, y;
int *p = &y;
int f(void){ if (guard) { p = &x; } return 0; }
int main(void){ return (x = 5) + (*p = 6) + f(); }

The undefinedness of this program is based on what happens in
the call to f(). If f is called before the other subexpressions in
main are evaluated, and if the guard expression (which could be
arbitrarily complex) is true, then the remaining expression effectively
becomes (x = 5) + (x = 6), which is undefined. The possible
complexity of the guard is a witness to the (static) undecidability
of this problem. The evaluation of the guard may make arbitrary
use of the entire C language, so the entire semantics is needed in
order to determine whether this program is undefined.

Based on this, note that: when two expressions are unsequenced,
it means that evaluation can happen in any order. Thus, it is natural
to map unsequenced behavior into nondeterministic behavior. This
way, we can use state space exploration as a single mechanism
to find unsequenced behavior. To identify this kind of undefined
behavior naively can be incredibly computationally expensive; some
optimizations are necessary to make this feasible. We offer two
optimizations to make this feasible.

First, with a little case analysis of the definition of the sequencing
relation, it is clear that there can be no sequenced write before a
read of the same object with no intervening sequence point. This
means that if in searching the semantic state space, we find an
execution in which the write of a scalar object happens before a
write or read of the same object with no intervening sequence point,
then we can conclude that this write/write or write/read pair is
unsequenced. Whenever a write is made, its location is recorded in
the locsWrittenTo cell, which is emptied whenever a sequence point
is crossed. This cell is first checked whenever a read or write is made
to ensure that there is no conflict. This strategy has the added benefit
that some undefined behaviors of this kind can be detected even
during interpretation (where only a single path through the state
space is explored). It is similar to the strategy used by Norrish [25].

Second, it turns out that a large subset of allowed orderings do
not need to be considered in order to detect undefined behavior
or possible nondeterminitic behaviors. Because we are looking for
writes before other events, we can take the liberty of applying side
effects immediately instead of delaying them.

What would it mean for there to exist an expression whose
definedness relied on whether or not a side effect (a write) occurs

later instead of earlier? There must be three parts to the expression:
a subexpression E generating a side effect X, and, for generality’s
sake, further subexpressions E′ and E′′. The particular evaluation
where we do side effects immediately would look like E X E′
E′′. Because this is always a possible execution, and we assume
it does not show a problem, we can conclude neither E′ nor E′′
may neither read or write to X. If there is a problem only when we
delay the side effect, it can be seen in a path like E E′ X E′′. For
this to be different than applying the changes to X immediately, it
means there must be some use of X in the evaluation of E′. But
this contradicts the previous assumption.

This shrinks the state space dramatically, while at the same time
not missing any undefined behavior. Our semantics does capture the
appropriate state space, as seen in Section 6.3.1.

4.7 KCC
Using some simple shell and Perl scripts for handling output and
input, C programs are parsed and translated into a Maude term,
then reduced using the rules of our formal semantics, producing
indistinguishable behavior from the same C program run as native
code. We call this interpreter, obtained automatically from our
formal semantics, KCC. As we will show in Section 6, KCC
is significantly more than an interpreter—in addition to simple
interpretation, it is also capable of debugging, catching undefined
behaviors, state space search, and model checking. Once KCC is
installed on a system, compilation of C programs generates a single
executable file (an “a.out”) containing the semantics of C, together
with a parsed representation of the program and a call to Maude.
The output is captured by a script and presented so that for working
programs the output and behavior is identical to that of a real C
compiler. To emphasize the seamlessness, here is a simple transcript:

$ kcc helloworld.c
$./a.out
Hello world

While it may seem like a gimmick, it helped our testing and
debugging tremendously. For example, we could run the definition
using the same test harness GCC uses for its testing (see Section 5).
It also means people with no formal background can get use out of
our semantics simply by using it as they would a compiler.

5. Evaluation
No matter what the intended use is for a formal semantics, its use
is limited if one can not generate confidence in its correctness. To
this aim, we ensured that our formal semantics remained executable
and computationally practical.

5.1 GCC Torture Tests
As discussed in the previous section, our semantics is encapsulated
inside a drop-in replacement for GCC [11], which we call “KCC”.
This enables us to test the semantics as one would test a compiler.
We were then able to run our semantics against the GCC C-torture-
test [12] and compare its behavior to that of GCC 4.1.2, as well as the
Intel C++ Compiler (ICC) 11.1 and Clang 3.0 r132915 (C compiler
for LLVM). We ran all compilers with optimizations turned off.

We use the torture test for GCC 4.4.2, specifically those tests
inside the “testsuite/gcc.c-torture/execute” directory. We chose
these tests because they focus particularly on portable (machine
independent) executable tests. The README.gcc for the tests says,
“The ‘torture’ tests are meant to be generic tests that can run on
any target.” We found that generally this is the case, although
there are also tests that include GCC-specific features, which had
to be excluded from our evaluation. There were originally 1093
tests, of which we excluded 267 tests because they used GCC-
specific extensions or builtins, they used the _Complex data type or

Draft; do not distribute! 8 2011/6/30

certain library functions (which are not required of a freestanding
implementation of C), or they were machine dependent. This left us
with 826 tests. Further manual inspection revealed an additional 50
tests that were non-conforming according to the standard (mostly
signed overflow or reading from uninitialized memory), bringing
us to a grand total of 776 viable tests.

In order to avoid “overfitting” our semantics to the tests, we ran-
domly extracted about 30% of the conforming tests and developed
our semantics using only this small subset (and other programs dis-
cussed in Section 5.2). After we were comfortable with the quality
of our semantics when running this subset, we ran the remaining
tests. Out of 541 previously untested programs, we successfully
ran 514 (95%). After this initial test, we began to use all of the
tests to help develop our semantics; we now run 769 (99%) of
the 776 compliant tests.

Unseen (541) All (776)
Compiler Count Percent Count Percent

GCC 537 99.3 768 99.0
ICC 540 99.8 771 99.4
Clang 532 98.3 763 98.3
KCC 514 95.0 770 99.2

The 776 tests represent about 23,500 SLOC, or 30 SLOC/file.

Correctness Analysis Our executable formal semantics did as well
or better than the compilers we tested. We incorporated the passing
tests into our regression suite that gets run every time we commit
a change. This way, upon adding features or fixing mistakes, our
accuracy can only increase.

Three of the six failed tests rely on floating point accuracy
problems. Two more rely on evaluating expressions inside of
function declarators, as in:

int fun(int i, int array[i++]) { return i; }

which we are not handling properly. The last is a problem with
the lifetime of variable length arrays.

Coverage Analysis In order to have some measure of the effec-
tiveness of our testing, we recorded the application of every se-
mantic rule for all of the GCC torture tests. We excluded rules
having to do with the standard library, since the torture tests do
not focus on these aspects of the language, as well as non-core se-
mantic rules, such as rules helping to make nice output messages.
This left — rules, of which GCC exercised — (—%). (CME: spe-
cific numbers coming soon. It will be about 900 rules, of which
GCC exercises about 90%)).

In addition to getting a coverage measure, this process suggests
an interesting application. For example, in the GCC tests looked
at above, a rule that deals with negating floating point values was
never applied. By looking at such rules, we can create new tests
to trigger them. These tests would improve both confidence in the
semantics as well as the test suite itself.

5.2 Exploratory Testing
We have also tested our semantics on programs gathered from around
the web, including programs of our own design and from open
source compilers. Not counting the GCC tests, we include over
17,000 SLOC in our regression tests which are run when making
changes to the semantics. Each test is deterministic, and the output
is compared automatically against the output of GCC. These tests
include a number of programs from the LCC [14] and CompCert [2]
compilers. We also execute the “C Reference Manual” tests (also
known as cq.c),5 which go through Kernighan and Ritchie [20]

5 We have been unable to determine the author or origin of this test suite.
Please contact us with any information.

and test each feature described in about 5,000 SLOC. When these
tests are added to the GCC tests described above, it brings our
rule-coverage to —% (—/— rules). (CME: numbers coming soon).

We can successfully execute Duff’s Device [9], an unstructured
switch statement where the cases are inside of a loop inside of the
switch statement itself, as well as quines (programs whose output
are precisely their source code), and a number of programs from
the Obfuscated C Code Contest [24]. All of these test programs,
as well as our semantics, are available from our project webpage
(http://anonymous/).

6. Applications—Formal Semantics is Useful!
Here we describe applications of our formal semantics, which are in
addition to the interpreter already mentioned. The tools presented
here are automatically derived from the semantics—changes made
to the semantics immediately affect the tools. We are permitted
this luxury because we take advantage of general purpose tools
available to rewriting logic theories, of which our semantics is one.
Contrast this to the nearly universal strategy of writing analysis
tools independently of a semantics. Instead of coming up with a
different model for each tool, we argue that a plethora of tools
can be created around a single semantic definition. These tools are
essentially different wrappers, or views, of the semantics.

6.1 Debugging
By introducing a special function “__debug” that acts as a break-
point, we can turn the Maude debugger into a simple debugger for
C programs. This provides the ability to step through interesting
parts of execution to find out what rules of semantics are invoked
in giving meaning to a program.

In the semantics, we handle this function by giving a labeled rule
that causes it to evaluate to a “void” value. It is essentially equivalent
to void __debug(int i) { }. If this function is called during
execution, it drops the user into a debugger that allows her to inspect
the current state of the program. She can step through more rules
individually from there, or simply note the information and proceed.
If the __debug call is inside a loop, the user will see a snapshot
each time it reaches the expression. For example:

int main(void){
for (int i = 0; i < 10; i++){ __debug(i); }
printf("done!\n");
}

We can run or debug the program above as follows:

$ kcc debug.c
$./a.out # run the program normally
done!
$ DEBUG=1 ./a.out # or run it in the debugger

Debug(1)> where .

〈__debug(0 : int) ···〉k 〈··· i 7→ L ···〉env ···

Debug(1)> resume .

〈__debug(1 : int) ···〉k 〈··· i 7→ L ···〉env ···

The user can use this to see what the value of the __debug argument
is each time through the loop, as well as the entire state of the
program when the breakpoint was reached. The state presented to
the user includes all of the cells of the language (Figure 2). This
elided state is represented by the elipses above. In addition to the
“where” and “resume” commands, there is also a “step” command
to step through the application of a single semantic rule [5, §22.1].

6.2 Runtime Verification
There are two main avenues through which we can catch and identify
runtime problems with a program: catching undefined behavior,
and symbolic execution.

Draft; do not distribute! 9 2011/6/30

http://anonymous/

6.2.1 Undefined Behavior
The first mechanism is based around the idea that when something
lacks semantics (i.e., when its behavior is undefined according to
the standard) then the evaluation of the program will simply stop
when it reaches that point in the program. We use this mechanism
to catch errors like signed overflow or array out-of-bounds.

In this small program, the programmer forgot to leave space
for a string terminator ('\0'). The call to strcpy() will read
off the end of the array:
int main(void) {
char dest[5], src[5] = "hello";
strcpy(dest, src);
}

GCC will happily execute this, and depending on the state of
memory, even do what one would expect. It is still undefined, and
our semantics will detect trying to read past the end of the array.
Because this program has no meaning, our semantics “gets stuck”
when exploring its behavior. It is through this simple mechanism
that we can identify undefined programs and report them to the
user. By default, when a program gets stuck, we report the state of
the configuration (a concrete instance of that shown in Figure 2)
and what exactly the semantics was trying to do at the time of the
problem. We have also begun to add explicit error messages for
common problems—here is the output6 from our tool for this code:
$ kcc buggy_strcpy.c ; ./a.out
ERROR encountered while executing this program.
Description: Reading outside the bounds of an object.
Function: strcpy
Line: 3

6.2.2 Symbolic Execution
Through the use of symbolic execution, we can further enhance
the above idea by expanding the behaviors that we consider unde-
fined, while maintaining the good behaviors. Symbolic execution
is straightforward to achieve using a rewriting-based semantics:
whether a term is concrete or abstract makes no difference to the
theory. Rules designed to work with concrete terms do not need to
be changed in order to to work with symbolic terms.

As we explained in Section 4.3, we treat pointers not as concrete
integers, but as symbolic values. These values can then have certain
behavior defined on them, such as comparison, difference, etc. This
technique is based on the idea of strong memory safety, which
had previously been explored with a simple C-like language [34].
In this context, it takes advantage of the fact that addresses of
local variables and memory returned from allocation functions
like malloc() are unspecified [18, §7.20.3]. However, there are
a number of restrictions on many addresses, such as the elements
of an array being completely contiguous and the fields in a struct
being ordered (though not necessarily contiguous).

For example, take the following program:
int main(void) {
int a, b;
if (&a < &b) { ... }
}

If we gave objects concrete, numerical addresses, then they would
be comparable in some way. However, this piece of code is actually
undefined according to the standard [18, §6.5.8:5], and so we flag
this program as problematic. Symbolic locations that are actually
base/offset pairs allow us to do just that. We only give semantics
to relational pointer comparisons where the two addresses share a
common base. Thus, evaluation gets stuck on the program above.

6 Here and elsewhere in this section, we take the liberty to slightly simplify
the output to make it fit in less vertical space.

$ kcc bad_comparison.c ; ./a.out
ERROR encountered while executing this program.
Description: Cannot compare pointers with different
base objects using '<'.

Function: main
Line: 3

Of course, sometimes locations are comparable. If we take the
following code instead:

int main(void) {
struct { int a; int b; } s;
if (&s.a < &s.b) { ... }
}

the addresses of a and b are guaranteed to be in order [18, §6.5.8:5],
and in fact our semantics finds the comparison to be true because
the pointers share a common base.

Another example can be seen when copying a struct one byte at
a time (as in an implementation of memcpy()); every byte needs to
be copied, even uninitialized fields (or padding), and no error should
occur [18, §6.2.6.1:5–7]. Because of this, our semantics must give
it meaning. Using concrete values here would mean missing some
incorrect programs, so we use symbolic values that allow reading
and copying to take place as long as the program never uses those
uninitialized values in undefined ways.

6.3 State Space Search
We can also use our semantics to do both matching-based state
search and explicit state model-checking with linear temporal logic
(LTL). The basic examples below show how our semantics captures
the appropriate expression evaluation semantics precisely.

6.3.1 Exploring Evaluation Order
To show our semantics captures the evaluation orders of C expres-
sions allowed by the specification, we examine some examples from
related works. The results given below are not just theoretical results
from our semantics, but are actual results obtained from executing
the tools provided by our semantic framework.

To start with a simple example from Papaspyrou and Maćoš [29],
we take a look at x+(x=1) in an environment where x is 0. This
expression is undefined because the read of x (the lone x) is
unsequenced with respect to the write of x (the assignment). Using
our semantics to do a search of the behaviors of this expression
yields two possible behaviors: {Error} and {x=1,e=1}, where e
is the result of the entire expression. This result means that the
expression is undefined, not that it is sometimes undefined. If there
is any undefined path (or evaluation order), then the expression
as a whole is undefined.

Norrish [25] offers the deceptively simple addition expression
(x=0) + (x=0), which in many languages would be valid. How-
ever, in C it is again a technically undefined expression due to the
unsequenced assignments to x. Our semantics gives two {Error}
states, one for each path. All paths are undefined, so the naively-
expected result {x=0,e=0} is not returned.

Another example in the literature is given by Papaspyrou [28],
which shows how C can exhibit non-deterministic behavior while
staying conformant. The driving expression is the addition of
two function calls. In C, function evaluation is not allowed to
interleave [18, 6.5.2.2:10], so the behavior of this program is
determined solely on which call happens last:

int r = 0;
int f (int x) { return (r = x); }
int main(void){ f(1) + f(2); return r; }

If f() is called with the argument 2 last, then the result will be 2, and
similarly for 1. Searching with our semantics gives the behaviors
{r=1} and {r=2}, which are indeed the two possible results.

Draft; do not distribute! 10 2011/6/30

As a last example, we look at a more complex expression of
our own devising: f()(a(b(), c(d()))). Except for f(), each
function call simply prints out its name and returns 0. The function
f(), however, prints out its name and then returns a function
pointer to a function that prints “e”. The function represented
by this function pointer will be passed results of a(). We elide
the actual function bodies, because the behavior is more easily
understood by this tree:

e
f a

b c

d

This tree (or Hasse diagram) describes the sequencing relation for
this expression. That is, it must be the case that d happens before
c, that b and c happen before a, and that f and a happen before
e. Running this example through our search tool gives precisely
the behaviors allowed by the standard:

$ kcc nondet.c ; SEARCH=1 ./a.out
15 solutions found
bdcafe bdcfae bdfcae bfdcae dbcafe dbcfae dbfcae dcbafe
dcbfae dcfbae dfbcae dfcbae fbdcae fdbcae fdcbae

6.3.2 Model Checking
In addition to the simple state search we showed above, one can also
use our semantics for LTL model checking. For example, consider
the following program:

typedef enum {green, yellow, red} state;
state lights[2] = {green, red};

int nextState(int light){
state other = lights[(light+1)%2];
switch (lights[light]) {
case(green):
lights[light] = yellow; return 0;
case(yellow):
lights[light] = red; return 0;
case(red):
if (other == red) { lights[light] = green; }
return 0;

}
}

int main(void){
while(1){ nextState(0) + nextState(1); }
}

This program is meant to represent two orthogonal traffic lights
(lights[0] and lights[1]) at the same intersection. It provides
an implementation of an algorithm to change the state of the
lights from green to yellow to red, and is based on a number
of introductory model checking examples, such as (todo). The
program takes advantage of the unspecified order of evaluation
of addition in the expression nextState(0) + nextState(1)
to nondeterministically choose the order in which the lights are
changed.

(CME: This rest of this section is still in progress.)
This program should maintain the safety property that it is always

the case that at least one of the lights is red.
We can verify similarly the liveness property that either light

will eventually turn green.

7. Limitations and Future Work
Here we delineate the limitations of our definition and explain
their causes and effects.

There are two main ways in which semantics can be incomplete—
under-definedness and over-definedness. Typically when one thinks
of incompleteness, one thinks of failure to give meaning to correct
programs. However, because we want to be able to correctly identify
as many incorrect or unportable programs as possible, the semantics
must be balanced appropriately between defining too much or too
little. It is equally important not to give semantics to programs
that should be undefined.

In the first case, we are not missing any features—we have given
semantics to every feature required of a freestanding implementation
of C. With this said, our semantics is not perfect. For example,
we still are not passing 100% of our test cases (see Section 5).
Also, our semantics of floating point numbers is particularly weak.
During execution or analysis, we simply rely on an IEEE-754
implementation of floating point arithmetic provided to us by our
definitional framework (K). This is fine for interpretation and
explicit state model checking, but not for deductive reasoning.

In the second case, although our semantics can catch many bad
behaviors other tools cannot, there is still room for improvement.
For one, our semantics has no notion of alignment, or equivalently,
we align all types to one-byte boundaries. This means we cannot
catch undefined behavior related to alignment restrictions. Note that
others have worked on formalizing alignment requirements [23],
but it has never been incorporated into a full semantics for C. We
also do not handle type qualifiers (like const or volatile); we
simply ignore them. These qualifiers can be safely ignored when
interpreting correct programs, but it means we are not detecting
problems related to those features in incorrect programs. It also
means that we are missing possible behaviors when searching
programs that use volatile.

We have not yet used our C definition for doing language or
program level proofs, even though the K Framework supports both
program level [32] and semantics level proofs [10]. To do so, we
need to extend our semantics with support for formal annotations
(e.g., assume, assert, invariant) and connect it to a theorem prover.
This is already being done for a subset of the C language [31], and
we intend to apply those techniques to actual C in the future.

We still do not cover all of the standard library headers. So far,
we have added library functions by need in order to run example
programs, which is why we have semantics for library functions
like malloc(), longjmp(), parts of printf(), variadic functions,
and over 30 others. We intend on covering more libraries in the
future, but for now, one could supplement what we provide by using
implementations of libraries written in C.

In our current semantics, only some of the implementation-
defined behaviors are are available—the most common ones. By
making the semantics parametric, we hope others can add or change
implementation-defined rules to suit their needs.

Finally, we should mention the speed of our system. While it
is not nearly as fast C compiled natively, it is usable. Of the GCC
torture test programs described listed in Section 5, our semantics
ran over 93% of these programs in under 10 seconds (each). An
additional 4% completed in 2 minutes, 2% in 5 hours, and 1%
further in under 3 days. In comparison, it takes GCC about 0.05 s for
each test. The reader should keep in mind that this is an interpreter
obtained for free from a formal semantics. In addition, work is
being done by the K framework developers to speed their semantic
interpreters up dramatically [15], to speeds similar to that of modern
interpreters like Python or Ruby.

8. Conclusion
It is a shame that, despite the best efforts of over 40 years of re-
search in formal programming languages, most language design-
ers still consider the difficulties of defining formal semantics to
outweight the benefits. Formal semantics and practicality are not

Draft; do not distribute! 11 2011/6/30

typically considered together. When C was being standardized, the
standards committee explored using formal semantics, but in the
end decided to use simple prose because, “Anything more ambitious
was considered to be likely to delay the Standard, and to make it less
accessible to its audience” [17, §6]. This is a common sentiment
in the programming language community. Indeed, startlingly few
“real” languages have ever been completely formalized, and even
fewer were designed with formal specification in mind.

Based on our experience with our semantics, the development
of a formal semantics for C could have taken place alongside the
development of the standard. Within roughly 6 person-months, we
had a working version of our semantics that covered more of the
standard than any previous semantics. The version presented in
this paper is the result of 18 person-months of work. To put this in
perspective, one member of the standards committee estimated that
it took roughly 62 person-years to produce the C99 standard [19].
We are not claiming that we have done the same job in a fraction
of the time; obviously writing a semantics based on the standard is
quite different than writing the standard itself. We are simply saying
that the effort it takes to develop a rewriting-based semantics is quite
small compared to the effort it took to develop the standard itself.

The reluctance of the language community towards formal
methods has not been without reason—it is not always clear that
having a formal semantics earns the designer anything tangible
for her effort. Commonly mentioned benefits like improving the
understanding of the language or providing a model in which sound
arguments about the language can be made are relatively intangible;
to be accepted by the general language community, semantics needs
to be shown to have concrete value beyond that of prose.

The time has come to start developing analysis tools built
directly from formal models. Instead of building analysis tools
for different languages and different versions of each language,
the analysis infrastructure surrounding the semantics could be
maintained independently so that one could derive tools for multiple
languages simply by swapping out the semantic rules. We offer
our work as one small step in this direction; we are not alone,
and there are other tools including pluggable analysis architectures
like Frama-C [8] and formal tools like CompCert [2] that share
part of this vision.

Our semantics and its automatically generated tools have already
found one serious application. Csmith [38] is a C program test
generator that generates random conforming programs from a large,
expressive subset of the C language. These tests are then used to
perform differential testing among C compilers to find compilation
bugs. To date, the Csmith team has found more than 325 bugs in
common compilers like GCC and Clang. The programs Csmith
generates are almost always too large (many between 1,000 and
10,000 SLOC) to submit as bug reports and need to be reduced.
The reduction process is semi-automatic, but is riddled with the
possibility of introducing undefined behavior. Until now, these
tests would have to be carefully examined by hand for undefined
behavior, because any such behavior would render the tests invalid.
Our semantic tools are being used by the Csmith team to detect
this undefined behavior and have allowed them to more completely
automate the process and reduce the tests more aggressively.

References
[1] P. E. Black. Axiomatic Semantics Verification of a Secure Web Server.

PhD thesis, Brigham Young University, February 1998.

[2] S. Blazy and X. Leroy. Mechanized semantics for the Clight subset
of the C language. Journal of Automated Reasoning, 43(3):263–288,
2009.

[3] M. Bofinger. Reasoning about C programs. PhD thesis, University of
Queensland, February 1998.

[4] R. S. Boyer and J. S. Moore. A Computational Logic Handbook.
Academic Press, second edition, 1998.

[5] M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Martí-
Oliet, and C. Talcott. All About Maude, A High-Performance Logical
Framework, volume 4350 of LNCS. Springer, 2007.

[6] J. V. Cook and S. Subramanian. A formal semantics for C in Nqthm.
Technical Report 517D, Trusted Information Systems, November 1994.

[7] J. V. Cook, E. L. Cohen, and T. S. Redmond. A formal denotational
semantics for C. Technical Report 409D, Trusted Information Systems,
September 1994.

[8] P. Cuoq, J. Signoles, P. Baudin, R. Bonichon, G. Canet, L. Correnson,
B. Monate, V. Prevosto, and A. Puccetti. Experience report: OCaml for
an industrial-strength static analysis framework. SIGPLAN Not., 44:
281–286, August 2009.

[9] T. Duff. On Duff’s device, 1988. URL http://www.lysator.liu.
se/c/duffs-device.html. Msg. to the comp.lang.c Usenet group.

[10] C. Ellison, T. F. Şerbănuţă, and G. Roşu. A rewriting logic approach
to type inference. In 19th Intl. Workshop on Algebraic Development
Techniques (WADT’08), volume 5486 of LNCS, pages 135–151, 2009.

[11] FSF. GNU compiler collection, 2010. URL http://gcc.gnu.org.
[12] FSF. C language testsuites: “C-torture” version 4.4.2, 2010. URL

http://gcc.gnu.org/onlinedocs/gccint/C-Tests.html.
[13] Y. Gurevich and J. K. Huggins. The semantics of the C programming

language. In Computer Science Logic, volume 702 of LNCS, pages
274–308, 1993.

[14] D. R. Hanson and C. W. Fraser. A Retargetable C Compiler: Design
and Implementation. Addison-Wesley, 1995.

[15] M. Ilseman, C. Ellison, and G. Roşu. On compiling rewriting logic
language definitions into competitive interpreters. Technical Report
http://hdl.handle.net/2142/17444, University of Illinois, De-
cember 2010.

[16] ISO/IEC JTC 1, SC 22, WG 14. ISO/IEC 9899:1999: Programming
languages—C. Technical report, Intl. Organization for Standardization,
December 1999.

[17] ISO/IEC JTC 1, SC 22, WG 14. Rationale for international standard—
programming languages—C. Technical Report 5.10, Intl. Organization
for Standardization, April 2003.

[18] ISO/IEC JTC 1, SC 22, WG 14. ISO/IEC 9899:201x: Programming
languages—C. Committee draft, Intl. Organization for Standardization,
August 2011.

[19] D. M. Jones. The New C Standard: An Economic and Cultural
Commentary. Self-published, December 2008. URL http://www.
knosof.co.uk/cbook/cbook.html.

[20] B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice Hall, second edition, 1978.

[21] J. Meseguer. Conditional rewriting logic as a unified model of
concurrency. Theoretical Computer Science, 96(1):73–155, 1992.

[22] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermedi-
ate language and tools for analysis and transformation of C programs.
In Intl. Conference on Compiler Construction, pages 213–228, 2002.

[23] M. Nita, D. Grossman, and C. Chambers. A theory of platform-
dependent low-level software. In 35th ACM Symposium on Principles
of Programming Languages (POPL’08), 2008.

[24] L. C. Noll, S. Cooper, P. Seebach, and L. A. Broukhis. The international
obfuscated C code contest, 2010. URL http://www.ioccc.org/.

[25] M. Norrish. C formalised in HOL. Technical Report UCAM-CL-TR-
453, University of Cambridge, December 1998.

[26] M. Norrish. A formal semantics for C++. Technical report,
NICTA, 2008. URL http://nicta.com.au/people/norrishm/
attachments/bibliographies_and_papers/C-TR.pdf.

[27] N. S. Papaspyrou. A Formal Semantics for the C Programming
Language. PhD thesis, National Technical University of Athens,
February 1998.

[28] N. S. Papaspyrou. Denotational semantics of ANSI C. Computer
Standards and Interfaces, 23(3):169–185, 2001.

Draft; do not distribute! 12 2011/6/30

http://www.lysator.liu.se/c/duffs-device.html
http://www.lysator.liu.se/c/duffs-device.html
http://gcc.gnu.org
http://gcc.gnu.org/onlinedocs/gccint/C-Tests.html
http://hdl.handle.net/2142/17444
http://www.knosof.co.uk/cbook/cbook.html
http://www.knosof.co.uk/cbook/cbook.html
http://www.ioccc.org/
http://nicta.com.au/people/norrishm/attachments/bibliographies_and_papers/C-TR.pdf
http://nicta.com.au/people/norrishm/attachments/bibliographies_and_papers/C-TR.pdf

[29] N. S. Papaspyrou and D. Maćoš. A study of evaluation order semantics
in expressions with side effects. Journal of Functional Programming,
10(3):227–244, 2000.

[30] G. D. Plotkin. The origins of structural operational semantics. Journal
of Logic and Algebraic Programming, 60:60–61, 2004.

[31] G. Roşu and A. Ştefănescu. Matching logic: A new program verification
approach (nier track). In ICSE’11: Proceedings of the 30th Intl.
Conference on Software Engineering, pages 868–871, 2011.

[32] G. Roşu, C. Ellison, and W. Schulte. Matching logic: An alternative
to Hoare/Floyd logic. In Proceedings of the 13th Intl. Conference on
Algebraic Methodology And Software Technology (AMAST’10), volume
6486 of LNCS, pages 142–162, 2010.

[33] G. Roşu and T. F. Şerbănuţă. An overview of the K semantic framework.
Journal of Logic and Algebraic Programming, 79(6):397–434, 2010.

[34] G. Roşu, W. Schulte, and T. F. Şerbănuţă. Runtime verification of
C memory safety. In Runtime Verification (RV’09), volume 5779 of
LNCS, pages 132–152, 2009.

[35] T. F. Şerbănuţă and G. Roşu. K-Maude: A rewriting based tool
for semantics of programming languages. In 8th Intl. Workshop on
Rewriting Logic and its Applications (WRLA’09), volume 6381 of
LNCS, pages 104–122, 2010.

[36] S. Subramanian and J. V. Cook. Mechanical verification of C programs.
In ACM SIGSOFT Workshop on Formal Methods in Software Practice,
January 1996.

[37] S. Summit. C programming FAQs: Frequently asked questions, 2005.
URL http://www.c-faq.com/.

[38] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding
bugs in C compilers. In Programming Language Design and Imple-
mentation (PLDI’11), 2011. To appear.

[39] W. Zimmermann and A. Dold. A framework for modeling the semantics
of expression evaluation with abstract state machines. In Abstract State
Machines, volume 2589 of LNCS, pages 391–406, 2003.

Draft; do not distribute! 13 2011/6/30

http://www.c-faq.com/

	Introduction
	Comparison with Existing Formal C Semantics
	Background
	C Standard Information
	Why Details Matter
	Rewriting Logic and K

	The Semantics of C in K
	Syntax
	Configuration (Program + State)
	Memory Layout
	Semantics
	Lookup and Assignment
	Reference and Dereference
	Structure Members
	While and Break
	Malloc and Free
	Setjmp and Longjmp

	Parametric Behavior
	Expression Evaluation Strategy and Undefined Behavior
	KCC

	Evaluation
	GCC Torture Tests
	Exploratory Testing

	Applications—Formal Semantics is Useful!
	Debugging
	Runtime Verification
	Undefined Behavior
	Symbolic Execution

	State Space Search
	Exploring Evaluation Order
	Model Checking

	Limitations and Future Work
	Conclusion

